United Kingdom Mathematics Trust

Intermediate Mathematical Challenge

Solutions 2022

© 2022 UK Mathematics Trust

For reasons of space, these solutions are necessarily brief.
There are more in-depth, extended solutions available on the UKMT website, which include some exercises for further investigation:
www.ukmt.org.uk

1. B In hours, 6 minutes equals $\frac{6}{60}=\frac{1}{10}=0.1$.
2. A The amount of topping required is $2 \frac{1}{2} \times(100+50+50) \mathrm{g}=2 \frac{1}{2} \times 200 \mathrm{~g}=500 \mathrm{~g}=0.5 \mathrm{~kg}$.
3. B The average number of eggs per nest is $\frac{3000000}{20000}=\frac{300}{2}=150$.
4. D The number of days required to dig the tunnel is $\frac{2000}{5}=400$. This is just over one year.
5. C The correct answer may be found by calculating the value of $10006-8008$ and comparing it with the values of the five options. However, it is clear that $10000-8002=10006-8008$ as each number on the left of the equation is 6 less than the corresponding number on the right of the equation.
6. D 20% of $3 \frac{3}{4}=\frac{1}{5} \times \frac{15}{4}=\frac{3}{4}$.
7. \mathbf{E} Let the output from the function machine be n.

Then the input is $((n+10) \times 3+10) \times 3=3(3 n+30+10)=9 n+120$.
The smallest positive integer input occurs when $n=1$. Therefore the smallest possible positive integer which Iris could have input so that the output is also a positive integer is $9 \times 1+120=129$.
8. A 40% of 50% of 60 equals 40% of $30=12$. Also, 50% of 60% of 70 is 50% of $42=21$. So the required difference is $21-12=9$.
9. E As x is greater than 2022, then $\frac{x}{2022}$ and $\frac{x+1}{2022}$ are greater than 1 , whereas $\frac{2022}{x}$ and $\frac{2022}{x+1}$ are less than 1 .
So we can eliminate A and C. As the remaining three fractions all have the same numerator and positive denominators, the smallest fraction is that with the largest denominator, namely $\frac{2022}{x+1}$.
10. C The perimeter of each rectangle is $2 \times(3+1) \mathrm{cm}=8 \mathrm{~cm}$.

The total perimeter, in cm , of the separate rectangles is therefore $100 \times 8=800$. When two rectangles are placed together at a "join" in the pattern, there is an overlap of length 1 cm and the total perimeter is reduced by 2 cm . In the complete pattern there are 99 joins and hence its perimeter, in cm, is $800-99 \times 2=800-198=602$.
11. E Let the correct answer be x. Then $\frac{x}{4}=9+x$. So $\frac{3 x}{4}=-9$. Therefore $x=-\frac{4 \times 9}{3}=-12$.
12. A Let the length of the hypotenuse of the smallest triangle be l. Then $l^{2}=2^{2}+2^{2}=8$.

So $l=\sqrt{8}=2 \sqrt{2}$. Therefore the ratio of the lengths of the sides of the middle triangle to the lengths of the sides of the smallest triangle is $\sqrt{2}: 1$. Hence the corresponding ratio of the areas of these two triangles is $2: 1$. Similarly, the area of the largest triangle is twice the area of the middle triangle. Now the area of the smallest triangle is $\frac{1}{2} \times 2 \times 2=2$. Therefore, the area of the middle triangle is $2 \times 2=4$. Hence the area of the large triangle is $2 \times 4=8$.
So the area of the shape is $2+4+8=14$.
13. C Let the three consecutive integers be $n-1, n$ and $n+1$. Then $(n-1) n(n+1)=n-1+n+n+1$. So $n\left(n^{2}-1\right)=3 n$. Hence $n\left(n^{2}-4\right)=0$. Therefore $n=0$ or $n^{2}=4$. So $n=-2,0$ or 2 and the sets of three consecutive integers in which the sum of the integers equals their product are $\{-3,-2,-1\},\{-1,0,1\}$ and $\{1,2,3\}$.
14. D Let each number in the second row of the number pyramid be n. Then the numbers in the third row are both $2 n$ and the top number is $4 n$. So the top number is a multiple of 4 .
Hence option D is correct and therefore option E is incorrect.

Also, the number pyramid above provides counterexamples to options A, B and C.
15. \mathbf{E} The line l is the perpendicular bisector of the line segment joining points $(5,3)$ and $(1,-1)$.

The midpoint of this line segment is $\left(\frac{5+1}{2}, \frac{3+(-1)}{2}\right)=(3,1)$.
The gradient of the line segment is $\frac{3-(-1)}{5-1}=\frac{4}{4}=1$. Hence the gradient of l is -1 .
Let the equation of l be $y=-x+c$. As l passes through the point $(3,1), 1=-3+c$. So $c=4$. Hence the equation of l is $y=-x+4$ or $y=4-x$.
16. D Note that $4^{2022}=\left(2^{2}\right)^{2022}=2^{4044}$. Therefore half of 4^{2022} is $2^{4044} \div 2=2^{4043}$.
17. \mathbf{C} As shown in the upper figure, X consists of two straight portions of length 6 cm and two semicircular arcs of radius 1 cm .
So its length is $\left(2 \times 6+2 \times \frac{1}{2} \times 2 \pi \times 1\right) \mathrm{cm}=(12+2 \pi) \mathrm{cm}$.
In the lower figure, the band Y turns through one third of a revolution at each corner, so it consists of three straight portions of length 4 cm and three arcs, each of which is one third of the circumference of a circle of radius 1 cm .
Hence its length is $\left(3 \times 4+3 \times \frac{1}{3} \times 2 \pi \times 1\right) \mathrm{cm}$ $=(12+2 \pi) \mathrm{cm}$.

So the two bands have the same length.
18. B Let the cost of Slack Bess be $£ C$. Then the profit on the horse is $C \%$.

Therefore $C\left(1+\frac{C}{100}\right)=56$. So $C^{2}+100 C-5600=0$. Hence $(C+140)(C-40)=0$.
Therefore, as $C>0, C=40$. So Slack Bess cost $£ 40$.
19. A The circumference of the circle is $2 \pi \times 6=12 \pi$.

So the area of the sector shown is $\frac{10}{12 \pi} \times \pi \times 6^{2}=\frac{10 \times 36}{12}=30$.
20. D Let the mean of Aroon's five integers be m. Then the median is $m+2$ and the mode is $m+4$. Hence we can let the five integers in ascending order be $x, y, m+2, m+4, m+4$, where x and y are to be determined. Since the mean of the integers is m, their sum is $5 m$.
So $x+y+3 m+10=5 m$. Therefore $x+y=2 m-10$. Now for the range of the integers to be as large as possible, x needs to be as small as possible. In turn, this means that y must be as large as possible. We know that y is an integer which is less than $m+2$, so its maximum value is $m+1$. So the smallest possible value of x is $2 m-10-(m+1)=m-11$.
Hence the largest possible value of the range of the integers is $m+4-(m-11)=15$.
21. B First note that the radius of the larger semicircle is 2 .

So its area is $\frac{1}{2} \times \pi \times 2^{2}=2 \pi$.
Let the radius of the smaller semicircle be r.
Then, by Pythagoras' Theorem, $r^{2}+r^{2}=2^{2}$. So $r^{2}=2$.

Therefore the area of the smaller semicircle is $\frac{1}{2} \times \pi \times 2=\pi$.
23. E The sum of the interior angles of a hexagon is $(6-2) \times 180^{\circ}=720^{\circ}$. Hence each interior angle of a regular hexagon is $720^{\circ} \div 6=120^{\circ}$.
In the figure, $\sin 60^{\circ}=\frac{P Q / 2}{2}$. So $P Q=4 \sin 60^{\circ}=4 \times \frac{\sqrt{3}}{2}=2 \sqrt{3}$.
Therefore the height of the area of overlap is $2+2-2 \sqrt{3}=4-2 \sqrt{3}$.
The length of the area of overlap is 2 .
Hence the area of overlap of the two squares is $2(4-2 \sqrt{3})=8-4 \sqrt{3}$.

24. B Let the costs, in pounds, of apple, blueberry, cherry and damson pies be a, b, c, d respectively.

Then $c=2 a, b=2 d$ and $c+2 d=a+2 b$.
Substituting for b and c in the third equation gives $2 a+2 d=a+4 d$. Therefore $a=2 d$.
So $c=2 \times 2 d=4 d$.
Now the cost, in pounds, of one of each type of pie is $a+b+c+d=2 d+2 d+4 d+d=9 d$.
So the amount in pounds which Paul spends is a multiple of 9 .
Of the given options, only $£ 18$ satisfies this requirement.
25. C Let the stones measure 1 unit by 1 unit.

Then, after the border is added, the patio measures $x+2$ by $y+2$.
So the area of the border is $(x+2)(y+2)-x y$.
Therefore $(x+2)(y+2)-x y=x y$. So $x y+2 x+2 y+4-x y=x y$, that is $x y-2 x-2 y=4$.
Hence $x y-2 x-2 y+4=8$, that is $(x-2)(y-2)=8$.
The table shows possible integer values of $x-2$ and the corresponding values of $y-2, x$ and y.

$x-2$	$y-2$	x	y
-8	-1	-6	1
-4	-2	-2	0
-2	-4	0	-2
-1	-8	1	-6
1	8	3	10
2	4	4	6
4	2	6	4
8	1	10	3

Note that both x and y must be positive, so there are four possible values of x, namely $3,4,6,10$.

